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Learning to be Impatient: Modeling the Dynamics of the Inference Engine in Venture

We model the log score in an inference run of Venture (a probabilistic programming language), using a hidden 
Markov model (HMM).  To find parameters for this model, we apply a slight variant of the EM algorithm, along 
with message passing on the HMM.  We use this model to help the Venture inference engine escape local optima 
and find global optima faster.  We find that our model indeed helps Venture find better optima, but also that 
randomly resetting the sampling algorithm had much the same effect.

1 – Introduction

Venture [1] is a probabilistic programming language, which allows users to describe probability models using the 
syntax of a programming language.  The user can then describe observations of his model, and run inference to 
get estimates of the non-observed nodes.  A simple Venture model may be as follows:

(assume rained_today (flip 0.3))  ; There is a 0.3 chance of rain
(assume sprinklers_on (if rained_today
  (flip 0.1)
  (flip 0.8)
)
(assume wet_grass (if (or rained_today sprinklers_on)
  (flip 0.9)
  (flip 0.1)
)
(observe wet_grass true)
(observe rained_today true)
(infer 100)
(predict sprinklers_on)

Figure 1: A probabilistic model, as specified in Venture.  The predict command should return a distribution over the 
possible states of sprinklers_on, e.g. the probability that the sprinklers were on.

To run inference on a Venture model, Venture applies the Metropolis-Hastings (MH) algorithm, a sampling 
algorithm for probability distributions.  Roughly speaking, MH starts with some guess of the states of the 
system.  It then makes a small change to the state (flipping a boolean variable, or perturbing the value of a 
continuous variable), and evaluates the probability of the model generating this state.  If this probability 
increased with the change, MH keeps this change.  Otherwise, it may revert to the old guess, or it may still keep 
the change with some small probability that is a function of how much the likelihood decreased.  The “output” of
MH is the string of guesses that it makes.  In the infinite limit, this string of guesses is guaranteed to match the 
actual distribution of the un-observed variables, given the observed variables.

The main difficulty with MH is that the convergence time may be very large.  It may take MH a long time to find
a “good” guess – one that has a high likelihood – and the string of guesses will only be close to the true 
distribution over the un-observed variables once some good guesses has been found.  Before then, MH returns 
very low-likelihood states.

There is no accepted algorithmic solution to this problem, but there are some successful “hacks”.  Often, running
many separate instances of MH on the same problem is more likely to lead to a global optimum then running one
instance for a longer period of time.  Periodically resetting the sampler has the same effect.  If the user is 

[1] http://arxiv.org/pdf/1404.0099v1.pdf



watching the execution of the sampler, he might want to manually reset the sampler whenever the likelihood 
score appears to plateau.  In this project, we implement an automatic version of this last strategy using machine 
learning – we train a model of how the likelihood score changes over time, and reset the sampler based on the 
results of the model.  This will hopefully allow MH to find a more likely optimum in fewer iterations.

2 – Modeling the time-evolution of the likelihood score

Our “control strategy” will only use one variable: the value of the MH algorithm likelihood score.  The goal is to
determine when the MH algorithm is stuck in a local maximum from the time-evolution of the likelihood.  As 
such, we model the likelihood score as a hidden Markov model, with each step in the algorithm corresponding to
one transition of the HMM.  Each hidden state represents a “true value” of the likelihood.  The observed value is 
the true value, plus some Gaussian noise.  There are nBins possible true values.  At each step, the likelihood has 
a (1-pTrans) chance of staying at the same true value, or a pTrans chance of switching to a different one.  If the 
likelihood jumps, any other true value is considered equally likely.  This model is summarized in Figure 2.

Figure 2: Markov chain for the time-evolution of the likelihood value.  There are nBins possible values for the likelihood, 
and the value changes with total probability pTrans.

Note that these “true values” are not designed to correspond to any physical quantity – they are merely a way to 
simplify the dynamics of the inference algorithm.

We expect every probabilistic program to have a different set of parameters for this HMM: a different set of bins 
(true likelihood values), and a different pTrans.  Therefore, we need to learn these parameters for every program.
To do this, we first run several short inference chains, and fill a matrix likelihood[step, chainIdx] with the 
likelihood values from each chain.  (In my final experiments, I used 10 chains of 100 steps each.  I did not try 
any other possibilities.)

We then use the EM algorithm to find a set of bins and a pTrans that explain the observed likelihoods well.  In 
my experiments, we fixed nBins to 5 bins to reduce the complexity of the inference problem.  (I did not try any 
other values of nBins.)  To apply the EM algorithm to this scenario, we start with an estimate of the bin values 
and of pTrans.  We then assign each step in each chain to a bin, based on the estimated parameters. We then re-
estimate the parameters based on the bin assignments from the previous step.  This process is repeated until the 
parameters stop changing from iteration to iteration.  The labeling and parameter re-estimation steps are 
described below..

Labeling the steps with a bin value is done using the message passing algorithm.  Each node in the Markov chain
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(each step in the sampler) passes to its neighbors (the steps immediately before and after it in the same chain) a 
message.  The message from node i to node i+1 is the probability that node i+1 is in each bin, given the 
information from nodes 1 through i:

Here, A is the transition matrix:

And the observation probability is a normal distribution around the true value of the bin.

Finally, each message vector is normalized to sum to 1.  To save space, this is not shown in the equations above.

The messages from i+1 to i are defined analogously, and the final bin distribution at each node is equal to the 
element-wise product of the two messages into the node, normalized to 1.

To compute the bin distribution, we need to compute all messages, starting with Msg[0 to 1] (assuming a 
uniform prior distribution on bins at node 0) and going forwards to the end of the chain.  At the end, we have a 
best estimate of the bin distribution of the last node.  Using this estimate, we compute the backwards messages, 
until we have every message, and therefore a bin distribution at every node.  In Figure 3, this message passing 
algorithm is used to classify the likelihood score from a run of MH.



Figure 3: Using the message passing algorithm to classify a series of likelihood scores.  Green traces are likelihood scores, 
blue traces are the HMM's most likely prediction of the “true value” of the likelihood score at each point.  Different 
parameters were used in each plot, showing how these parameters affect the output.  Top left: two bins, pTrans = 0.01.  Top 
right: two bins, pTrans = 0.05.  Bottom left: three bins, pTrans = 0.05.  Bottom right: three bins, pTrans = 0.2.  Values for 
the bins were manually selected.

Given the probability that each step is in each bin, it is easy to re-estimate the bin true values.  Simply take a 
weighted average of the likelihood value of each step, weighted by the probability that the step is in the bin of 
interest.  We also need to estimate the new pTrans, the probability that the value jumps to a new bin.  It's not 
obvious how to estimate pTrans directly from the probabilities, so we first found the maximum likelihood bin for
each step.  We counted the number of places where the most likely bin changed in a step, and set pTrans to this 
number divided by the total number of steps.  We implemented this process in Python using Numpy, to interface 
with the Venture front-end.

Using the EM algorithm, we can cluster and label some sample data from a run of MH on a Venture program.  
Here, we performed EM on a sample of 10 different runs of MH on the same probabilistic program.  (An 
explanation of how test programs were generated is found in the next section.)  Each run was 100 steps long, and
as always, there are 5 bins.



Figure 4: Fitting the HMM with likelihood data.  In green are the actual likelihood traces from two runs of MH on the same
Venture program.  In blue is the “true value” of the likelihood at each point, according to the model.  The HMM was trained 
on 10 different traces in all, including these two.  Log likelihood is shown on the y-axis.

The results are shown in Figure 4.  Also of note is that the final value of pTrans was 0.042, which means that the 
MH trace has a 1-in-25 chance of making a major jump at any step, according to the model.

3 – Generating test Venture programs

To test inference algorithms in Venture, we wrote a procedure that randomly generated probabilistic programs of 
varying difficulty.  The procedure makes a directed graphical model with nNodes binary variables.  Each binary 
variable vi has nParents parents, randomly chosen from {v0, …, vi-i1}.  The conditional probability table at each 
node contains 2nParents entries, each one defining the probability that vi is true, given some combination of the 
values of its parents.  These probabilities are chosen uniformly at random from [0, 1].

The result is a probabilistic program of controllable complexity.  Increasing nNodes makes the program harder, 
by increasing the number of variables Venture has to infer.  Increasing nParents also makes the program harder, 
by making the Markov blanket of each node larger.  In the experiments described below, we used 7 nodes, and 3 
parents per node.  This was empirically the largest class of programs for which running 100 rounds of inference 
could reliably generate at least one large jump in likelihood.  Such jumps are necessary for the EM algorithm to 
estimate a useful pTrans value.

4 – Using the HMM to control inference in Venture

To apply our model to a probabilistic program in Venture, we first need to train our model on the dynamics of 
that particular program.  To get training data, we run several short inference chains on the program first.  In these
experiments, we run 10 chains of length 100.  (No other possibilities were tried.)  Using these chains, we fit an 
HMM, according to section 2.  We then evaluate our model on finding the global maximum in one long attempt, 
of length 1000 (once again, the only length I tested).

Now, we want to use the HMM to inform our decision of whether to restart the inference algorithm.  We could 
try to infer the bin distribution in the HMM, given the likelihoods coming out of the inference algorithm so far.  
But, we run into a problem: ideally, the long inference chain will return very high likelihoods, which will exceed 
the top bin in our HMM.  In that case, we can't make any meaningful predictions, because we can only predict 
that the likelihood will go down.  To avoid this, we instead look to see how much likelihoods vary in a sliding 
window.  Suppose the median bin size (the difference between the true values of two consecutive bins) is 



binSize.  Then, our model says that the likelihood spends on the order of 1/pTrans turns inside a range of 
binSize, before jumping away.  Therefore, if we see that the likelihood has been within the range of binSize for 
the last Θ(pTrans) turns, we can conclude that we are likely stuck at a local optimum, and reset the algorithm.  
Unfortunately, this method requires manual tuning of the timeout: we wait for k * pTrans turns, where k must be 
specified ahead of time.  In our experiment, we used k = 1.

We test our algorithm, as well as regular MH, on 40 programs.  We find that our reset strategy results in 
significantly more likely optima when testing on randomly generated Venture programs.  Figure 5 (in blue) 
shows a histogram of the difference in score between our algorithm and the Venture MH algorithm.  (Since these
scores are log likelihoods, a positive score of 10 means that our algorithm found a configuration of hidden 
variables that is 20,000 times more likely.)

Figure 5: Difference in likelihood of the best state found by resetting, versus vanilla MH.  Positive means resetting did 
better.  In blue is our algorithm (mean = 12.2, SD = 10.0).  In red is a control, which resets the same number of times as our 
algorithm, but at regular intervals (mean = 10.4, SD = 10.1).

However, in the course of running these experiments, we found a potential confounding variable.  The MH 
algorithm tended to find better optima when it was reset more often, regardless of the timing.  Ideally, we would 
like to show that our algorithm resets the sampler at “good” times – that it does better than randomly resetting 
the sampler the same number of times.  To test this, we added a second control, which reset the MH sampler at 
fixed intervals, so that the total number of resets was consistent with our algorithm on each problem.  The results
of this control, when compared to regular MH, are shown in red in the Figure 5.

The control that resets at a fixed interval achieves an average gain of 10.4 points over regular MH.  This is most 
of the 12.2 point gain that our algorithm achieves.  Indeed, a mean difference significance test shows that our 
algorithm is better than this control only with a p = 0.07.  Therefore, while the data so far suggest that our 
algorithm is better than uninformed resetting, there are not enough samples to definitely tell.

Finally, we are interested in not just finding global optima, but also in sampling the entire distribution over 
posteriors.  We want our sampling algorithm to visit all of the possible states of the posterior in a well-mixed 
way.  While we don't know how to formally test for well-mixing in the context of our programs, we can 
qualitatively see in Figure 6 that resetting – both periodic (green) and controlled (blue) – helps MH explore 
states with a much wider range of likelihoods, including many states that are much more likely.  A possible 
direction for future work is formally measuring how well various modifications to the MH algorithm sample all 
states fairly.
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Figure 6: Likelihood values over the course of a long inference operation, for two different problems.  Red: default MH.  
Blue: control with resetting at fixed intervals.  Green: our algorithm.  Note that both resetting algorithms sampled from 
states with much higher likelihood than default MH.

5 – Discussion and summary

It is rather concerning that simply resetting the MH sampler more often results in higher likelihood scores.  In 
theory, MH uses gradient ascent to locate states with high likelihood faster than would be possible with random 
guessing.  In Figure 6, it appears that this is not the case.  When the sampler is reset to a random state, the 
likelihood value often makes a big positive jump.  This suggests that randomly sampling from the prior 
distribution is actually more likely to result in a high-likelihood state than using MH, at least for this problem.  I 
am troubled by this conclusion – it may mean that our random problem generator in fact makes problems that are
ill-posed for probabilistic programming.

In general, our work shows that it is possible to train a HMM to model the dynamics of a sampling algorithm, 
and extract useful information from the HMM that reflects the dynamics of the sampling algorithm.  We use this 
information to improve the performance of the sampling algorithm.  Future work could involve more 
sophisticated models of the likelihood score as a function of time.  Perhaps the distribution of likelihood scores 
could be estimated, giving us some idea of what the best possible likelihood score may be.  (In contrast, our 
current method only estimates bins of likelihoods – it has no idea how often each bin is used.)  Estimating the 
distribution of likelihood scores would require a good prior on this distribution, which would in turn require 
deeper knowledge of the dynamics of MH.

Another possible avenue of approach is to allow a variable number of bins.  This would require a non-parametric
model of the likelihood, like a Chinese restaurant process.  With a non-parametric bin model, we could 
incrementally update the model as the MH sampler takes each sample.  Based on the model so far, we could then
decide whether to reset the sampler.


