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9.77 Final Project – Assembling Puzzles and Detecting Discontinuities 

In this project, we look at solving jigsaw puzzles using computer vision.  The essential problem – 

detecting whether two pieces belong next to each other in the same image – is one of detecting 

continuity / discontinuity.  I hope to devise a better way of solving the continuity problem, with puzzle 

assembly as the motivating application. 

I was unable to develop a better measure of continuity.  Instead, I found a way for continuity metrics to 

express how confident they are of a matching.  I improved the greedy puzzle-solving algorithm by having 

it place the most confident piece first, which results in significantly better solutions compared to row-

by-row placement. 

Background / Prior Art 

Wolfson et al. (1988, “Solving jigsaw puzzles by computer”) attempted to solve jigsaw puzzles by 

matching the shape of the pieces.  They picked out the curvature of the pieces from scans of the 

unassembled puzzle, and used this to calculate the degree to which pairs of pieces fit together.  They 

showed that finding a configuration of the pieces that maximized total degree of fit (for some relevant 

metric) is an NP-complete problem, by reduction to the travelling salesman problem.  Using 

approximation schemes, they managed to solve a 104-piece puzzle. 

Instead of shape, Pomeranz, Shemesh, and Ben-Shahar (2011, “A fully automated greedy square jigsaw 

puzzle solver”) actually used the images on the puzzle pieces.  The dissimilarity between two pieces was 

defined as the squared difference between each edge pixel on one piece, and the corresponding edge 

pixel on the other piece.  To solve a puzzle, pieces were first greedily assembled using local similarity; 

then, some global relaxation was applied in an attempt at finding the absolute minimum dissimilarity, 

over a local minimum.  This algorithm could completely solve a majority of test puzzles with 432 pieces. 

Experimental Setup 

This project will focus on detecting continuity between images (puzzle pieces).  The puzzle solver will be 

used to evaluate different continuity metrics (and to provide a nice visual indication of performance); it 

is not an end in and of itself.  Therefore, we will use a purely greedy solver, and leave out the global 

relaxation done by Wolfson and by Pomeranz.  Following the framework of both papers, we will first 

compute a neighbor likeliness measure between every pair of puzzle pieces, in both left-right and top-

bottom directions.  Then, we agglomerate a solution by adding one piece at a time to a seed piece.  In 

every iteration, a hole is chosen next to an existing piece, and the most likely piece is found to fill that 

hole. 

To simplify the puzzle solving process, the greedy algorithm is given the identity of the upper-left corner 

piece.  This makes agglomeration a lot simpler, but results in slightly easier puzzles than the ones used 

by Pomeranz.  Starting from the top left, the algorithm fills the rows one by one with puzzle pieces. 

As test puzzles, 1200x800 grayscale images were cut into a variable number of pieces.  The pieces are 

rectangular; no protrusions or indentations are added.  The result is shown in Figure 1. 



 

Figure 1: A sample of puzzle pieces from a 1200-piece puzzle we used in testing. 

Evaluating Similarity Metrics 

Pomeranz used an edge pixel similarity measure: the degree of (mis-)fit between two pieces was defined 

as the sum of the squares of the pairwise difference between pixel values along their shared edge.  

Formally, for a left-right boundary between img1 and img2: 

𝑆(𝑖𝑚𝑔1,  𝑖𝑚𝑔2) = − ∑ (𝑖𝑚𝑔1[𝑖, 𝑒𝑛𝑑] − 𝑖𝑚𝑔2[𝑖,  1])
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We are interested in metrics in the frequency domain.  In the simplest metric (which we call “Fourier 

spectra similarity”), we compare the one-dimensional Fourier transforms of the edges, and define the 

dissimilarity as the sum of the squared differences of the power at each frequency.  In addition, we can 

apply a low-pass filter to each frequency series, giving more weight to disparities in the lower 

frequencies.  Or, we can average data from a wider strip of edge pixels. 

To measure the accuracy of these similarity metrics, we set up a classification task.  A test image was 

divided into 1200 puzzle pieces (in a 40x30 cut).  For each piece A, we calculate the left-right similarity 

between A and every other piece.  The metric classifies A successfully if the best-matching piece is 

indeed the piece that was to the right of A in the original image.  This process is repeated for top-bottom 

similarity, and the total fraction of correctly-matched pieces is recorded.  This is a 1200-way 

classification task, so the baseline probability is 1/1200.  



 

Figure 2: Performance of different similarity metrics in a task requiring identification of neighbor puzzle pieces. 

As shown in Figure 2, none of the proposed similarity metrics performed as well as pixel similarity, 

though all of them were well above the baseline probability.  This is disappointing, but perhaps not 

surprising in retrospect.  Frequency domain representations discard phase data, which determine how 

various objects in the strip of pixels are positioned.  This position information is very important in 

detecting whether two images are continuous. 

Match Confidence 

We now turn to extracting an additional piece of information from the pixel similarity metric: the 

confidence of a match between two pieces.  We may not be able to increase the matching accuracy, but 

we would like to know how confident we are in our choice of best match.  Given a piece A looking for a 

partner, we can find both the best match B and the second-best match C.  We can then look at 

𝑆(𝐴, 𝐵) − 𝑆(𝐴, 𝐶), the gap in score between the best match and the second-best match.  If this gap is 

large, we expect that B is correctly matched to A, because there were no other plausible competitors.  

On the other hand, if the gap is small, B may not be the correct match (even though it is our best guess), 

because there exist alternatives that are nearly as good.  Therefore, the larger the gap, the more 

confident we are in the match we found. 

We can validate this proposal by tallying the gap sizes for correct matches and incorrect matches.  These 

histograms are shown in Figure 3.  There is indeed a sizeable difference between the gap sizes of correct 

and incorrect matches.  Correct matches had a median gap size of 0.048; incorrect matches had a 

median gap size of 0.007.  Of course, we also note that this is not a perfect predictor of classification 

correctness: many correct matches have very small gaps. 
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Figure 3: Histogram of gap sizes in the 1200-way classification task.  The gaps from correct matches are shown on 

the left; the gaps from incorrect matches are shown to the right. 

Using this measure of match confidence, we can build a better greedy puzzle solver.  Instead of filling 

the puzzle one row at a time, we can add the most confident piece in each iteration.  More specifically, 

we track a list of “frontier holes”, which are unfilled locations that border a filled location.  In each 

iteration of the algorithm, we look for the frontier hole that we can fill with the highest confidence.  We 

fill that hole with a puzzle piece.  The hope is, if we are initially uncertain about a hole, we will become 

more certain if more pieces near that hole are placed, so we can only do better by waiting. 

To evaluate the performance of the greedy algorithm with and without confidence-based filling, we 

count the fraction of neighbor pieces in the ground truth solution that are also neighbors in the 

algorithm’s solution.  (This method was used by Pomeranz.)  With 15x20 puzzles, filling the most 

confident pieces first results in large performance gains, as shown in Figure 4. 

Image # Row-by-row Most confident first 

1 0.211 0.758 

2 0.460 0.455 

3 0.278 0.515 

4 0.136 0.568 

5 0.333 0.786 

Average 0.284 0.616 
Figure 4: Neighbor accuracy of the greedy puzzle solver with row-by-row filling, and with confidence-based filling.  

Five different 15x20 puzzles were tested. 

Below, we look at some solutions generated by the greedy solver. 

Correct matches Incorrect matches 



 
Row-by-row, 21% accurate 

 
Most confident first, 76% accurate 

This is puzzle 1, for which the inclusion of confidence information dramatically improved performance.  

An animation of how the algorithm picked pieces is attached to this write-up. 



 
Row-by-row, 46% accurate 

 
Most confident first, 46% accurate 

This is puzzle 2, which was a failure case for the confidence algorithm. 

Conclusions 

Solving jigsaw puzzles by placing the most probably correct pieces first is a good strategy, resulting in 

large accuracy improvements for most puzzles.  The next logical step would be to introduce this 

technique to a state-of-the-art puzzle solver, with a global relaxation procedure after initial greedy 



matching.  A better greedy solver will certainly make relaxation easier runtime-wise.  It may also 

increase the maximum puzzle size that can be solved. 


